Золотое сечение Математический язык красоты

Золотое сечение

Чувствам человека приятны объекты, обладающие правильными пропорциями.

Святой Фома Аквинский (1225—1274)

Что общего имеют такие, каза^хось бы, не связанные друг с другом природные явле­ния, как расположение семян подсолнечника, элегантная спираль раковины улитки и форма Млечного Пути? Какой универсальный геометрический принцип скрыт в работах великих художников и архитекторов от Витрувия до Ле Корбюзье, от Ле­онардо да Винчи до Сальвадора Дали? Как бы это невероятно ни звучало, ответом на эти вопросы является просто число, известное на протяжении многих веков, ко­торое постоянно появляется в различных творениях природы и искусства. В резуль­тате этому числу были даны такие имена, как «божественное сечение», «золотое сечение» и «золотое число». Записать это число практически невозможно, не по­тому, что оно слишком большое, — оно чуть больше единицы — а потому, что оно состоит из бесконечного ряда цифр, которые никогда не образуют повторяющуюся группу. Поэтому нам придется использовать математическую формулу для записи золотого сечения:

l + √5
≡ 1,6180339887.

Далее в этой главе мы увидим, как это математическое выражение было получено, но стоит признать, что, по крайней мере на первый взгляд, «божественное сечение» не выглядит особенно впечатляющим. Наметанный глаз, однако, сразу заметит что — то подозрительное, раз появился квадратный корень из пяти. Этот корень обладает рядом свойств, которые дали этому числу, как и многим другим подобным, странное название «иррациональных». Иррациональные числа — это особые числа, на кото­рых мы также подробно остановимся.

Давайте попытаемся подойти к золотому сечению геометрически, чтобы найти его предполагаемое божественное свойство. Для этого построим прямоугольник, одна сторона которого в 1,618 раз длиннее другой; получится прямоугольник, в котором
соотношение сторон представляет собой золотое сечение (точнее, его приблизительное значение). Вот что у нас получится:

creditcard
1234 xtoo eσ⅞⅛w

 s
thebank g
Прямоугольник C таким соотношением сторон называется «золотым». На первый взгляд он может показаться нам обычным прямоугольником. Тем не менее давайте проделаем простой эксперимент с двумя кредитными картами. Положим одну из них горизонтально, а другую вертикально так, чтобы их нижние стороны находились на од­ной линии:

!i,; Х<5 ™ 05/10

X"θHN F CITIZEN

Если в горизонтальной карте мы проведем диагональную линию и продолжим ее, то увидим, что она пройдет в точности через правый верхний угол вертикальной карты — приятная неожиданность. Проделав этот эксперимент с двумя книгами одинакового размера, а именно с учебниками или книгами карманного формата, мы

Получим, вполне вероятно, тот же результат. Это свойство является характерным для двух «золотых» прямоугольников одинакового размера. Многие повседневные прямоугольные объекты созданы с таким соотношением размеров. Случайность.^ Может быть. Или, возможно, такие прямоугольники и другие геометрические фор­мы, использующие золотое сечение, по каким-то причинам особенно приятны глазу. Согласившись с этим предположением, мы разделим мнение величайших художни­ков и архитекторов. Об этом мы подробнее расскажем в четвертой главе. Не слу­чайно в математике золотое сечение принято обозначать греческой буквой Фи (Ф), первой буквой имени Фидия, знаменитого древнегреческого архитектора.

«Золотой» мир

Много написано об этой самой загадочной улыбке в истории искусства, но мы по­пробуем предложить математическое решение этой загадки. Давайте посмотрим, что произойдет, если наложить несколько «золотых» прямоугольников на изобра­жение лица прекрасной Моны Лизы:

Думал ли Леонардо да Винчи о золотом сечении, работая над своим шедевром.^ Это кажется маловероятным. Однако мы можем быть вполне уверены, что флорен­тийский гений придавал большое значение связи между эстетикой и математикой.

Мы еще вернемся к этому вопросу, а пока только заметим, что Леонардо делал иллюстрации к математической книге De Divina Proportione («О божественной про­порции»), написанной его хорошим другом Лукой Пачоли.

Леонардо, конечно, не единственный художник, в чьих работах встречается золо­тое сечение как в виде отношения двух сторон прямоугольника, так и в более слож­ных геометрических формах. Этот принцип в своих работах использовали многие художники последующих поколений, в том числе постимпрессионист Жорж Сёра и прерафаэлит Эдвард Бёрн-Джонс. В экстраординарной работе «Тайная вечеря» Сальвадора Дали золотое сечение также играет важную роль. Мало того, что по­лотно картины имеет размеры 268 на 167 сантиметров (почти идеальный «золотой» прямоугольник), так еще в центре картины изображен монументальный додекаэдр. Эта фигура является одним из правильных многогранников, которые можно вписать в сферу, и тесно связана с золотым сечением. Мы расскажем об этом в третьей главе.

Картина Жоржа Сёра «Купальщики в Аньере» (1884) представляет собой «золотой» прямоугольник. Некоторые из элементов картины также могут быть вписаны в «золотые» прямоугольники.

Давайте теперь обратимся к архитектуре, вершине прикладного искусства. Если зо­лотое сечение и вправду создает некую гармонию во всех ее проявлениях, то, возможно, мы увидим это в геометрических формах самых известных в мире зданий. Хотя немного рискованно настаивать на таком заявлении. Золотое сечение действительно появляется во многих замечательных архитектурных творениях на протяжении всей истории чело­вечества, таких как Великая пирамида или некоторые знаменитые готические соборы, но очень часто его присутствие практически незаметно. Тем не менее в некоторых случа­ях это вполне очевидно. Например, различные элементы фасада Парфенона, всемирно известного шедевра Фидия, представляют собой «золотые» прямоугольники.

Секрет розы

Связь золотого сечения с красотой — вопрос не только человеческого восприятия. Похоже, сама природа выделила Ф особую роль, когда дело касается предпочтения одних форм другим. Чтобы понять это, нам придется углубиться в свойства золотого сечения. Возьмем уже знакомый «золотой» прямоугольник и впишем в него квадрат, стороны которого равны ширине нашего прямоугольника. В результате мы получим

НОВЫЙ «золотой» прямоугольник. Повторим эту процедуру несколько раз, как по­казано на следующем рисунке:

Теперь в каждом из квадратов мы проведем дугу, как показано на рисунке ниже. Радиус каждой дуги равен длине стороны соответствующего квадрата. В результа­те наш рисунок будет выглядеть следующим образом:

Эта элегантная кривая Называется логарифмической спиралью. Она вовсе не яв­ляется математическим курьезом наоборот, эта замечательная линия часто встречается в физическом мире: от раковины наутилуса…

До рукавов галактик.

И в элегантной спирали лепестков распустившейся розы.

На примере королевы цветов мы вступаем в другую область, где тоже господству­ет золотое сечение: мир растений. Присутствие золотого сечения здесь неочевидно и требует введения нового математического понятия: последовательности Фибоначчи. Эта последовательность чисел, описанная итальянским математиком в XIII веке, на­чинается C двух единиц, а каждое следующее число равно сумме двух предыдущих. Вот первые пятнадцать чисел этой бесконечной последовательности:

1,1, 2, 3, 5, 8,13, 21, 34, 55, 89,144, 233, 377, 610.

Частное от деления любого числа последовательности на предшествующее ему число будет стремиться к Ф, давая все более точное значение для каждого следующего числа последовательности. Покажем это:

1/1 = 1 2/1 = 2 3/2 = 1,5 5/3 = 1,666…

8/5 = 1,6 13/8 = 1,625 21/13 = 1,615348…

34/21 = 1,61904…

55/34 = 1,61764…

89/55 = 1,61818…

144/89 = 1,61797…

Ф =1,6180339887…

Для сорокового числа последовательности частное совпадает с «золотым» числом C точностью до четырнадцатого десятичного знака. Связи между золотым сечение. м и числами Фибоначчи многочисленны и неожиданны, позже мы рассмотрим их более подробно. Достаточно отметить, насколько невероятна эта связь между абстрактным царством чисел и физической реальностью.

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *